Home - News and Events - Events

Events

Pubdate:8th March,2021
Rewire transcriptional circuit towards context-specific immune responses

Abstract
Transcriptional circuits play major roles in regulating T cell differentiation and response. Manipulating transcriptional machinery has been used to enhance T cell function in cell therapies, mainly via reinvigorating exhausted T cells towards effectors. In these studies, we have established a binary cell fate decision model between “partially functional survival” exhausted T cell fate and “hyperactive terminal” effector T cell fate and defined transcriptional immune checkpoint Fli1 as a safeguard to restrain effector proliferation and promote exhausted T cell progenitors. However, switching the cell fate from exhausted T cells to effectors will result in the reduction of cell durability during chronic antigen exposure and inflammation. Thus, we proposed new strategies about engineering cis-regulatory elements of effector associated genes. We first established orthogonal validation strategies of molecular and deep learning methods in tuning single bases in effector-associated genes and find key transcriptional circuits GATA3-TAL1 in regulating CD69 expression, and furthermore we developed in situ directed evolution system called Helicase-Assisted Continuous Editing (HACE) to process positional saturated single base mutagenesis on effector-gene enhancers and find multiple regulatory pathways towards effector-genes. Last, we performed generative model with prime editing screen and establish a strategy of generate de novo enhancer elements that drive gene expression in a context-specific mannerand further designed new DNA language model and molecular tools for dissecting native element functions in immune gene co-regulation patterns. Overall, by tuning transcriptional circuits, we can achieve the functional alteration of T cell fate and effector gene expression, which potentially lead to novel designs of context-specific T cell response circuits and contributes to microenvironmental precision-medicine.

Profile

陈则宇,北京大学基础医学院助理教授,研究员,博士生导师。2013年本科毕业于北京大学生命科学学院;2013年至2014年于耶鲁大学免疫系Richard A. Flavell实验室任科研助理;2014年至2020年于宾夕法尼亚大学免疫系E.John Wherry实验室攻读博士研究生并获得博士学位;2020年至2025年于哈佛大学医学院/博德研究所Bradley E. Bernstein实验室从事博士后研究工作,2025年4月入职北京大学基础医学院。

陈则宇共发表论文三十余篇,其中以一作/共同一作在Cell, Science, Immunity, Cell Genomics, Nature Reviews Immunology等期刊上发表论文6篇,总引用9600+,H-index 31,共6篇论文入选ESI高被引论文系列,并获批两项国际专利。

    陈则宇实验室目前聚焦于T细胞转录调控的遗传编码解析及其工程化研究,拟开发和利用新型分子生物学和计算生物学工具,包括新型单碱基编辑系统,哺乳动物原位定向进化系统,基因组大语言模型模拟突变,生成式人工智能等,目标在原代T细胞上探究如下两个方向:1)解析基因组上碱基突变对于免疫基因调控功能的预测,进而理解人类遗传多态性如何影响人类免疫健康;2)突破自然进化基因组的调控瓶颈,建立生成式T细胞转录环路体系,进而实现病理微环境特异性的精准医疗。



Related news